HUMAN
PHYSIOLOGY
NM Muthayya MBBS MSc PhD
Formerly Professor of Physiology
Madurai Medical College
Thanjavur Medical College
Coimbatore Medical College
Rajah Muthiah Medical College
Annamalai University
University of Health Sciences
Antigua, West Indies

Dean
Thanjavur Medical College
Dean and HOD Physiology
Vinayaka Missions Kirupananda Variar Medical College
Salem, India
Dedicated
to
My Students
This book on *Human Physiology* written and edited by Prof NM Muthayya, an eminent Professor of Physiology, who has contributed to the field of Physiology as the Faculty lead in various Universities in India and abroad. A revision of this textbook became inevitable for two reasons. The author has also tried to prune to some of the old wood. Even though the book has been revised with many editions, the bulk has been reduced. This edition of the book is a student friendly and easy to understand. The schematic pictures are too good. Abbreviations and symbol used in this book may be of great help to the students. Although the main framework of the textbook has been retained, almost all paragraphs have been revised.

The present edition provides additional knowledge in many sections.

The information provided in each section is exam-oriented for the benefit of the students.

Several illustrative diagrams and tables have been included to make the subject comprehensive and to revise it more easily.

Comparing to the previous edition this 4th edition is updated with reasonable additions and deletions.

The publication of the Textbook *Human Physiology* for medical students by Dr NM Muthayya is a timely and laudable venture. Although many costly textbooks written by western authors are available in the market, there are only very few standard textbooks prepared by Indian authors. I am glad to note that the present textbook keeps a balance between the basic essentials and advanced areas of knowledge in Physiology. I am pleased to introduce the book to the medical students and attractive to the teachers.

I have no doubt that this will be a valuable addition to the armamentarium of students of Physiology who are preparing for examination and are seeking a strong foundation. This book of Human Physiology 4th Edition will be kept for reference in the Tamil Nadu Dr MGR Medical University for the benefit of the undergraduate and postgraduate students.

As the Vice-Chancellor of the Tamil Nadu Dr MGR Medical University, I wish and congratulate Prof Dr NM Muthayya for taking much effort to bring this 4th edition of this book successfully.

Dr K Meer Mustafa Hussain
It gives me great pleasure to write a foreword for this comprehensive book of Physiology which incorporates latest information on Physiology.

The book “Human Physiology” is well written and tastefuly illustrated.

The author, Professor NM Muthayya, an eminent physiologist has made it possible for any beginner undergoing Medical as well as Paramedical Courses to grasp the fundamentals of Physiology through this easily readable book.

I wish to congratulate Dr Muthayya on this achievement and wish him all success.

Dr P Vijayalakshmi
Preface to the Fourth Edition

Since this book was published in 1986, it has undergone several modifications in its format and content. Two new editions and number of reprints have been published. This new fourth edition has been revised very extensively, new materials have been added, errors have been corrected, suggestions and information from physiology colleagues and readers have been taken into account and incorporated. Recent concepts have been included and the materials which are no longer relevant have been deleted. Number of new diagrams, tables and flow charts have been added. The format of the book is completely changed. By these changes this edition is made up-to-date and accurate to the extent possible and published under the title Human Physiology.

In order to emphasize the clinical significance of physiology to medical students the necessary clinical aspects have been included in relevant places then and there in the body of the subject matter and also at the end of each chapter.

To make the clinical aspects more striking and attractive these clinical aspects have been printed in italic type with red colour. The very purpose of this effort is only to initiate and induct the preclinical students to clinical studies and not to teach the clinical medicine in details which you will get during the clinical years of study.

As in the previous editions of this book, in this edition also the historical aspects, the names of Pioneer Scientists who contributed to some new discoveries and the names of Nobel Laureates in Medicine and Physiology have been given in the respective areas in order to honour them. With an intention of creating some interest in “The History of Medicine” among students these facts have been highlighted by printing them in "Green" colour.

I am always grateful to Dr (Mrs) S Parvathi Devi, Director and Emeritus Scientist (Retd) Institute of Physiology, Madurai Medical College, Madurai, India for the encouragement she has given as my guide, friend and philosopher. I am very much thankful to Dr N Harihara Subramanian, Professor of Physiology (Retd) and Mr PV Masilamani, Artist (Retd) Madurai Medical College for their contribution of some diagrams to the first edition of this book which forms and continues as the foundation for the present new edition.

I thank profusely Mr S Pusparaj and Mrs S Maithili Yogaraj of Mythe Creators, Coimbatore for their sincere effort to make the computer designing more attractive and colourful in the present form.

I am also thankful to my family members particularly my son Engineer RM Pratheep Pratap for his help in bringing out this edition.

I thank and appreciate Shri Jitendar P Vij (Chairman and Managing Director), Mr Tarun Duneja (Director-Publishing) of Jaypee Brothers Medical Publishers (P) Ltd, New Delhi and Chennai Branch, India who brought out this book at a very short notice of time. My heart felt desire is to dedicate this book to my students from whom I got the feedback and encouragement to venture on this task.

Madurai
Tamil Nadu, India

NM Muthayya
SECTION I: CELL PHYSIOLOGY

1. CELL PHYSIOLOGY .. 3-16
 - Cell and Cell Organelles
 - Structure of Cell Membrane
 - Intercellular Junctions
 - Membrane Transport
 - Genetics in Physiology
 - The Internal Environment and Homeostasis

2. RESTING MEMBRANE POTENTIAL AND ACTION POTENTIAL 17-22

3. PHYSIOLOGY OF CELL RECEPTORS ... 23-29
 - Receptors
 - General Aspects
 - Cyclic AMP
 - G-Proteins
 - Inositol Triphosphate (IP₃) and Diacylglycerol (DAG) Receptors Coupled with G-Proteins

SECTION II: MUSCLE

1. MUSCLE .. 33-39
 - Introduction
 - Voluntary Muscle
 - Structure of the Voluntary Muscle
 - Proteins of Contractile Filaments
 - Molecular Basis of Muscle Contraction
 - Excitation Contraction Coupling

2. NEUROMUSCULAR TRANSMISSION .. 40-43
 - Neuromuscular Junction–Structure
 - Mechanism of Neuromuscular Transmission
 - Myasthenia Gravis
 - Neuromuscular Blocking Agents
 - Nerve Supply to the Skeletal Muscles and Motor Unit

3. PROPERTIES OF SKELETAL MUSCLE 44-54
 - Properties of Skeletal Muscle
 - Changes Occurring during Muscle Contraction
 - Factors which Influence Contractility

SECTION III: BLOOD

1. BLOOD, PLASMA AND PLASMA PROTEINS 61-67
 - Functions of Blood
 - Physical Properties of Blood
 - Composition of Blood
 - Plasma Proteins
 - Functions of Plasma Proteins
 - Clinical Aspects

2. THE RED BLOOD CELLS OR ERYTHROCYTES 68-76
 - Description and Structure
 - Physiological Variations in the Number of Red Cells
 - Features of Red Blood Cells shown Outside the Circulation
 - Haemoglobin
 - Haemoglobin Derivatives
 - Clinical Aspects

3. WHITE BLOOD CELLS OR LEUCOCYTES 77-93
 - Classification and Morphology
 - Description of Each Variety of WBC
 - Functions of Neutrophils
 - Lymphocytes and Immune Mechanisms
 - Platelets or Thrombocytes

4. BLOOD VOLUME .. 94-105
 - Body Water
 - Measurement of Body Fluid Compartments
 - Methods for Estimation of Blood Volume
 - Extracellular Fluid
Lymphatics and the Lymph
Regulation of Blood Volume
Automatic Control of Blood Volume
Body Fluids
Fluid Interchange

5. BLOOD GROUPS 106-111
Classification
Chemical Basis for Blood Group Specificity
Determination, Inheritance of Blood Groups
The Rh Factor (Rhesus)
Haemorrhage
Transfusion
Complications of Blood Transfusion
Shock

6. HAEMOPOIESIS 112-120
Blood Forming Organs
Erythropoiesis
General Factors
Specific Factors
Leucopoiesis
Granulopoiesis
Thrombocytes Formation
Monocytes or Macrophages Production
Lymphocytes Production

7. SPLEEN .. 121-124
Structure
Splenic Circulation
Functions
Reticuloendothelial System (RES)

8. HAEMOSTASIS 125-135
Formation of Platelet Plug
Coagulation of Blood
Mechanisms of Coagulation
Coagulation Factors
Anticoagulants in Vitro
Coagulation time, Bleeding Time

SECTION IV: DIGESTIVE SYSTEM

1. DIGESTIVE SYSTEM 139-146
Gastrointestinal Function
Gastrointestinal Secretion
Digestion in the Mouth
Innervation of Salivary Glands
Functions of Saliva
Control of Salivary Secretion
Mastication
Deglutition

2. DIGESTION IN THE STOMACH OR
GASTRIC DIGESTION 147-154
Gastric Juice
Mechanism of Acid and Pepsin Secretion
Pavlov's Pouch
Peptides and Gastric Acid Secretion
CNS Peptides and Gastric Acid Secretion
Tests for Gastric Functions
Gastric Motility
Abnormal Gastric Movements

3. DIGESTION IN THE SMALL
INTESTINES 155-161
Pancreatic Juice
Composition and Functions
Pancreatic Digestion
The Small Intestinal Juice
Composition and Function
Control of Secretion
Regulation of Pancreatic Juice Secretion
Digestion of Carbohydrates, Proteins, Fats

4. DIGESTIVE FUNCTION OF
THE LIVER ... 162-167
Structure
Bile-Composition-Bile Pigments-Control of
Bile Secretion. Functions of Bile Gallbladder and
Bile Ducts
Filling and Emptying of Gallbladder

5. GASTROINTESTINAL HORMONES ... 168-171
Important Gastrointestinal Hormones, Functions
General Features of Intestinal Movements
Segmental Contractions
Movements of Villi, Large Intestine
Composition of the Faeces

6. INTESTINAL MOVEMENTS 172-176
Structure
Movements of Small Intestines
Movements of Large Intestines
Defaecation

7. INTESTINAL ABSORPTION 177-181
Methods of Study
Absorption of Carbohydrates - Proteins - Fats -
Cholesterol—Water and electrolytes - Vitamins

8. ENERGY BALANCE AND REGULATION OF
FOOD INTAKE 182-188
Balanced Diet
Hunger, Appetite and Satiety
Regulation
SECTION V: EXCRETORY SYSTEM

1. EXCRETORY SYSTEM ... 191-195
 Kidneys—Structure of Nephron
 Renal Circulation

2. URINE FORMATION ... 196-202
 Glomerular Filtration
 Tubular Reabsorption
 Tubular Secretion
 Tubular Synthesis

3. KIDNEYS IN THE REGULATION OF ACID
 BASE BALANCE AND OSMOTIC EQUILIBRIUM 203-208
 Buffer System
 Pulmonary Mechanism
 Acidosis, Alkalosis
 Regulation of osmotic Pressure
 Formation of Concentrated Urine
 Formation of Dilute urine

4. THE ENDOCRINE FUNCTION OF THE KIDNEYS 209-211
 Juxtaglomerular Apparatus
 Renin Secretion
 Functions
 Erythropoietin

5. MICTURITION .. 212-217
 Innervation of urinary Bladder
 Filling of the Bladder
 Emptying of the Bladder
 Barrington Reflexes
 Tests for Renal Function

6. SKIN ... 218-227
 Structure of the Skin
 Sweat Glands
 The Hairs
 Functions of the Skin
 Mechanism of Sweat Secretion
 Regulation of Body Temperature
 Heat Production -Heat Loss (Thermolysis)
 Nervous Regulation of Body Temperature
 Endocrine Regulation of Temperature
 Disturbances of Heat Regulation
 Heat Cramp or Stoker's Cramp
 Fever or Pyrexia

SECTION VI: ENDOCRINES

1. THE ENDOCRINES OR DUCTLESS GLANDS 231-251
 Hormone Secreting Tissues
 Methods of study of Endocrine Functions
 Mechanism of Hormones Action
 The Pituitary Gland
 Hormones of Anterior Pituitary Gland
 Growth Hormone (STH)
 TSH and its Functions
 ACTH and its Functions
 FSH and LH Functions
 Prolactin and its Functions
 Regulation of ACTH Secretion
 Growth, Abnormal Functions of Anterior Pituitary Gland
 Hypothalamo-Neurohypophyseal Link
 ADH or Vasopressin and its Functions
 Hormones of the Neurohypophysis
 Oxytocin and its Functions
 Regulation of Secretion of ADH

2. THE THYROID GLAND ... 252-261
 Development and its Structure
 Thyroid Hormones
 Biosynthesis
 Antithyroid Agents
 Hypothyroidism—Myxoedema
 Hyperthyroidism—Exophthalmic Goiter

3. THE PARATHYROID GLANDS 262-270
 Structure
 Functions
 Regulation of Parathyroid Functions
 Vitamin D—Functions
 Body Calcium and its Functions
 Tetany
 Hyperparathyroidism
 Physiology of Bone

4. THE ADRENAL GLANDS (SUPRARENAL GLANDS) 271-280
 Structure of the Adrenal Cortex
 Adrenal Cortex hormones
 Glucocorticoids
 Mineralocorticoids-Aldosterone
 Sex Corticoids
 Function of Glucocorticoids and Mineralocorticoids
 Abnormal Functions
5. THE ADRENAL MEDULLA 281-287
 Structure
 Adrenal Medullary Hormones
 Adrenaline
 Noradrenaline
 Biosynthesis of Catecholamines
 Actions of Adrenaline and Noradrenaline
 Adrenal Medullary Functions
 Emergency Theory of Adrenal Functions
 Stress

6. ENDOCRINE FUNCTION OF THE PANCREAS ... 288-295
 Pancreas—Islets of Langerhans
 Hormones
 Insulin, Glucagon
 Somatostatin
 Pancreatic Polypeptide
 Mechanism of Action of Insulin
 Insulin Antagonists
 Hyperglycaemia
 Diabetes mellitus
 Hypoglycaemia

7. PHYSIOLOGY OF REPRODUCTION 296-305
 Sex Differentiation and Development
 Reproduction in Female Menstrual Cycle
 Development of a Graafian Follicle in the Ovary
 Graafian Follicle
 Changes during Menstrual Cycle
 Small Lateral Cells of the Thecal Origin (SLC)
 Large Luteal Cells of Granulosa Cell Origin (LLC)
 Menstrual Disturbances

8. PREGNANCY AND LACTATION 306-314
 Placenta Formations
 Placental Hormones
 HCG and Pregnancy Tests
 Mammary Glands—Structure
 Lactation
 Pregnancy
 Steroid Hormones of the Placenta
 Changes in the Mother during Pregnancy
 Mammary Glands and Lactation
 Ovarian Hormones and their Actions

9. PHYSIOLOGY OF MALE REPRODUCTION 315-322
 Testes
 Structure
 Regulation of Testicular Function
 Spermatogenesis
 Endocrine Function
 Regulation of Leydig Cell Function
 Effects of Extirpation of Testes
 Male Secondary Sex Characters
 Fertility Control or Control of Conception

10. THE PINEAL GLAND.. 323
 Structure, Pineal Hormones
 Functions

11. ESSENTIAL FATTY ACIDS AND EICOSANOIDS 324-325
 Prostaglandins
 Leukotriens
 Thromboxane
 Prostacyclin

12. AGEING ... 326-328
 Causes
 Changes during Ageing

SECTION VII: CARDIOVASCULAR SYSTEM OR CIRCULATORY SYSTEM

1. STRUCTURE AND PROPERTIES OF HEART MUSCLE 331-342
 Cardiac Muscle
 Junctional Tissues
 Properties of the Heart Muscle
 The Origin and Spread of Cardiac Impulse
 The Spread of the Impulse in the Ventricles
 Nutrition and Metabolism of the Heart
 Myocardial Metabolism
 Heat Production in Heart Muscle
 Calcium Cycle in Cardiac Muscle

2. THE CARDIAC CYCLE .. 343-351
 Events of the Cardiac Cycle
 Changes during each Cardiac Cycle
 Changes in the Ventricular Volume
 Intracardiac Catheterisation
 The Heart Sounds

3. ELECTROCARDIOGRAPHY 352-362
 Electrocardiogram
 Abnormal Patterns of ECG
Electrical Activity of Individual Cardiac Muscle Fibre
Electrical Activity of SA Node and AV Node Cell
Arrhythmias and Irregularities of Heart Beat

4. THE REGULATION OF HEART'S PERFORMANCE 363-371
Physiological Variations
Control of the Heart Rate
Nervous Mechanism of Regulation of Heart Rate
The Cardiac Centres
The Cardioaccelerator Centre
Action of the Vagus
Vagal Tone
Mechanism of Vagal Action
Vagal Escape
Causes of Vagal Escape
The Sympathetic Nerves of the Heart
The Afferent Pathways
Chemical Regulation of Heart Rate
Mechanical Factors
Intrinsic Regulation of Cardiac Performance
The Physiologic Importance of the Four Major Determinants of Cardiac Performance

5. THE CARDIAC OUTPUT ... 372-376
The Venous Return
Force of the Heart Beat
Physiological Factors Modifying the Cardiac Output
Distribution of Cardiac Output to Various Organs
Determination of Cardiac Output
Method Employing Inhalation of Inert Gases
Physical Methods

6. THE ARTERIAL BLOOD PRESSURE . 377-389
Definitions and Significance
Determinants of the Arterial BP
Variations in BP Under Physiological Conditions
Regulation of BP
The Vasomotor Center and the Control of Blood Vessels
Axon Reflex
Hypertension

7. THE PHYSIOLOGY OF VASCULAR SYSTEM 390-397
Historical Note
Systemic Circulation
Functional Characteristics of Systemic Vessels
Pressure Gradient
Poiseuille Hagen Formula
Law of Laplace
The Arterial Pulse
The Radial Pulse
Analysis of Pulse Curve
Venous pulse
Capillary Circulation
Vascular Reaction of the Human Skin
The Triple Response
Venous Circulation

8. CIRCULATION THROUGH SPECIAL REGIONS OR SPECIAL CIRCULATIONS 398-407
General Consideration
Methods of Estimation of Volume of Blood Flow
Determination of Circulation Time
The Substances used for Injection
The Coronary Circulation
Factors Influencing Coronary Circulation
Cerebral Circulation
Nervous Control
Chemical Control
Skeletal Muscle Circulation
Foetal Circulation
Cardiovascular Response to Exercise
The Pulmonary Circulation

SECTION VIII: RESPIRATION

1. RESPIRATION .. 411-420
Introduction
The Respiratory Organs
Elastic tissue
Muscle
Blood Supply
Nerve Supply
Receptors
Drugs-Effects
The Bronchioles and the airsacs
Surfactant Formation
The Expansion of the Lungs at Birth
Intrapulmonary Pressure
Production and Maintenance of the Intrathoracic Negative Pressure

2. THE RESPIRATORY MOVEMENTS ...421-423
Muscles of Inspiration
Muscles of Expiration
3. THE LUNG AIR 424-426
Subdivisions of the Lung Volumes
The Total Lung Capacity
The Dead Space Air

4. GASEOUS EXCHANGES AND TRANSPORT
OF O₂ AND CO₂ 427-436
The Exchange of Gases in the Lungs
The Oxygen Transport
CO₂ Transport in the Body
The Release of CO₂ from the Blood in the Lungs
and its Expulsion from the Lungs in the Expired Air

5. THE CONTROL OF RESPIRATION 437-444
Purpose of Respiration
Medullary Respiratory Centres
Historical Background
Sub-division of Respiratory Neurons
Localisation of Respiratory Centres
PITTS Theory of Rhythmic Breathing
Regulation of Respiration
The Central Chemoreceptors

6. ANOXIA (OR) HYPOXIA 445-450
Classification of Hypoxia
Effects of Hypoxia
Mountain Sickness
Acclimatization
Caisson disease or Decompression Sickness
Asphyxia
Cyanosis
Modification of Respiration
Disturbances of Respiration
Artificial Respiration

7. PULMONARY FUNCTION TESTS 451-458
Limitation and Usefulness
Timed Vital Capacity (TVC)
Peak Expiratory Flow Rate
Mid Expiratory Time (MET)
Non-Respiratory Functions of the Lung
Exercise Physiology
Cardiovascular system changes
Metabolic changes
Endocrine changes
Other changes

SECTION IX: NERVOUS SYSTEM

1. NERVOUS SYSTEM 461-475
Development of the Nervous System
Subdivision of the Nervous System
The Neuron and its Structure
Types of Neuron
Neuroglia
Nerve Fibres
Classification of Nerve Fibres
Numerical Classification of Afferent Fibres
Physiological Properties of the Nerve Fibre
Accommodation
Resting Membrane Potential and Action Potential
The Nerve Impulse and Conduction of Nerve Impulses
Saltatory Conduction
Metabolism of Nerve Fibres
Synthesis of Proteins and Neurotransmitters
Nerve Growth Factor
Nerve Degeneration and Regeneration
Changes in the Nerve Cell Body
The Normal Electrical Reaction of the Nerve and Muscle and Electrotonus
Reaction of Degeneration

2. SOMATIC SENSATIONS 476-482
Classification of Sensory Receptors
Cutaneous Receptors
Nonsensory Proprioceptive Impulses from Muscles and Tendons
Muscle Spindle
Tendon End Organ of Golgi
Properties of Receptors
Generator Potential
Adaptation
Law of Projection.

3. SYNAPSE, SYNAPTIC TRANSMISSION
AND NEUROTRANSMITTERS 483-496
Types of Synapses
Synaptic Transmission
Properties of Synaptic Transmission
Facilitation or Repetitive Discharge
Synaptic Inhibition
 Neurotransmitters
Acetylcholine
Norepinephrine, Epinephrine and Dopamine
Biosynthesis
Dopamine
Gamma-Aminobutyric Acid and Other Amino Acids
4. REFLEX ACTION .. 497-502
 The Reflex Functions of the Nervous System
 Peripheral Nerves
 Dorsal Nerve Roots
 Properties of Reflex Action
 Stretch reflexes or Myotatic Reflexes
 Muscle Tone
 Lengthening Reaction, Inverse Myotatic Reflex

5. SPINAL CORD ... 503-514
 Gray Matter
 The Cell Groups in the Posterior Gray Horn
 Laminar Arrangement of the Gray Matter
 White Matter of the Spinal Cord
 The Tracts in the Spinal Cord
 Mode of Entry of Fibres Carrying Different Sensations
 Ascending Tracts in the Spinal Cord
 Sensory Pathways in the Brainstem
 Descending Tracts of the Spinal Cord
 Effect or Complete Transverse Section of the Spinal Cord
 Brown Sequard Syndrome

6. SENSORY FUNCTIONS.................................... 515-522
 Receptor Organs for Various Sensations
 Afferent Input and First Order Neurons
 Mode of Entry of Sensory Afferents and Second Order Neurons
 Sensory Pathways in the Spinal Cord and Brainstem
 Dorsal Column System
 Anterolateral Spinothalamic System
 Ventral Spinothalamic Tract
 Lateral Spinothalamic Tract
 Relay of Afferent Sensation in the Thalamus
 Neurophysiology of Pain
 Mechanism of Referred Pain
 Facilitation and Subliminal Fringe Effects

7. THE CEREBRAL CORTEX 523-534
 Layers of Neocortex
 Methods of Localisation of Cortical Functions
 The Frontal Lobe
 The Parietal Lobe
 The Temporal Lobe
 The Occipital Lobe

8. LIMBIC SYSTEM ... 535-539
 Components
 Connections and Functions

9. MOTOR MECHANISMS -PYRAMIDAL AND EXTRAPYRAMIDAL SYSTEMS 540-547
 General Aspects
 Motor Functions and Pyramidal System
 Extrapyramidal system
 Components
 Connections
 Functions
 Basal Ganglia
 Chorea and Athetosis
 Biochemical Features

10. THE CEREBELLM .. 548-554
 Functional classification
 The cerebellar cortex
 The connections of the cerebellum
 Afferent tracts
 Efferent tracts
 Archicerebellum
 Paleocerebellum
 Neocerebellum
 Functions
 Cerebellar Lesions—Clinical Manifestation

11. MUSCLE TONE/POSTURE AND EQUILIBRIUM 555-565
 Stretch Reflex
 Postural Reflexes
 Role of Vestibular System
 Central Projection of Vestibular System
 Spinovestibulospinal Reflexes
 Tonic Neck Reflexes
 Tests for Vestibular Function

12. THALAMUS AND HYPOTHALAMUS 566-572
 Medial Nuclear Mass
 Lateral Nuclear Mass
 Midline Nuclei
 Intralaminar Nuclei
 Pulvinar Nuclei
 Medial Geniculate Body
 Reticular Nucleus
 Thalamic Syndrome
 Hypothalamus
 Afferent Connections
 Efferent Tracts
 Control of Autonomic Nervous System
 Regulation of Body Temperature
Regulation of Food Intake
Regulation of Endocrine Functions
Regulation of Gastric Acid Secretion
Disorders of Hypothalamus

13. RETICULAR FORMATION (RF), SLEEP AND EEG .. 573-581
 The Central Reticular Core
 Ascending Components
 Descending Components
 Functions of the Reticular formation
 Neurophysiology of sleep
 Electroencephalogram (EEG)
 EEG Patterns during Different Sleep Periods

14. AUTONOMIC NERVOUS SYSTEM (ANS) ... 582-587
 Organisation
 Parasympathetic Motor Outflow
 Sympathetic Motor Outflow
 Transmission in Parasympathetic Nerves
 Transmission in Sympathetic Nerves
 Regulation of Autonomic Functions
 ANS Synaptic Transmission

15. NEUROPHYSIOLOGY OF SPEECH, LEARNING AND MEMORY 588-596
 Cortical Areas and Organisation of Speech
 Dominant Hemisphere and Representational Hemisphere
 Aphasia
 Conditioned Reflexes, Learning and Memory
 Neural Plasticity

16. CEREBROSPINAL FLUID 597-600
 Circulation of CSF
 Composition
 Intracranial Tension
 Analysis of CSF
 Lumbar Puncture
 Blood Brain Barrier

SECTION X: SPECIAL SENSES

1. EAR ... 603-611
 Anatomical Considerations
 Parts of Ear
 The Cochlea Sound Transmission-Mechanism of Hearing and Auditory Pathway
 Superior Olivary Nucleus
 Theories of Hearing
 Electrical Activity in the Cochlea
 Tests of Auditory Function

2. EYE ... 612-634
 Anatomical Considerations
 Optical System and Image Formation
 Eye Defects
 Receptors
 Functional Organisation
 Bipolar Cells
 Receptive Fields in the Retina
 The Visual Pathway
 Central Connections of the Retina
 Organisation in the Visual Cortex
 Orientation Columns and Ocular Dominance Columns
 Colour Vision
 Colour Blindness
 Iris and Accommodation
 Pupillary Reflexes
 Lacrimal Gland and Tears

3. OLFACTION AND TASTE 635-636
 Taste
 Distribution of Taste Buds
 Taste Receptors and Afferents
 Taste Pathway
 Factors Influencing Taste

4. SMELL OR OLFACTION 637-639
 Classification of Odours
 Factors influencing Olfactory function
 Olfactory Pathway
 Central Mechanisms of Olfaction
 Olfactometry

Index ... 641
Abbreviations and Symbols Used in this Book

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>µ</td>
<td>Micro, (10^{-6})</td>
</tr>
<tr>
<td>A (A)</td>
<td>Angstrom unit(s) (10(^{-10})m, 0.1nm); also alanine</td>
</tr>
<tr>
<td>ABC</td>
<td>ATP-binding cassette</td>
</tr>
<tr>
<td>ABP</td>
<td>Androgen-binding protein</td>
</tr>
<tr>
<td>ACE</td>
<td>Angiotensin-converting enzyme</td>
</tr>
<tr>
<td>Acetyl-CoA</td>
<td>Acetyl-coenzyme A</td>
</tr>
<tr>
<td>Ach</td>
<td>Acetylcholine</td>
</tr>
<tr>
<td>ACTH</td>
<td>Adrenocorticotropic hormone</td>
</tr>
<tr>
<td>Acyl-CoA</td>
<td>General symbol for an organic compound coenzyme A ester</td>
</tr>
<tr>
<td>ADH</td>
<td>Antidiuretic hormone (vasopressin)</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate</td>
</tr>
<tr>
<td>AGEs</td>
<td>Advanced glycosylation end products</td>
</tr>
<tr>
<td>AHG</td>
<td>Antihemophilic globulin</td>
</tr>
<tr>
<td>Ala</td>
<td>Alanine</td>
</tr>
<tr>
<td>ALS</td>
<td>Amyotrophic lateral sclerosis</td>
</tr>
<tr>
<td>AMP</td>
<td>Adenosine 5’-monophosphate</td>
</tr>
<tr>
<td>ANP</td>
<td>Atrial natriuretic peptide</td>
</tr>
<tr>
<td>APC</td>
<td>Activated protein C; also antigen-presenting cell</td>
</tr>
<tr>
<td>APUD cells</td>
<td>Amine precursor uptake and decarboxylation cells that secrete hormones</td>
</tr>
<tr>
<td>Arg</td>
<td>Arginine</td>
</tr>
<tr>
<td>Asp</td>
<td>Aspartic acid</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>A-V difference</td>
<td>Arteriovenous concentration difference of any given substance</td>
</tr>
<tr>
<td>AV node</td>
<td>Atrioventricular node</td>
</tr>
<tr>
<td>aVR, aVF, aVL</td>
<td>Augmented unipolar electrocardiographic leads</td>
</tr>
<tr>
<td>AV valves</td>
<td>Atrioventricular valves of heart</td>
</tr>
<tr>
<td>BGP</td>
<td>Bone Gla protein</td>
</tr>
<tr>
<td>BMR</td>
<td>Basal metabolic rate</td>
</tr>
<tr>
<td>BNP</td>
<td>Brain natriuretic peptide</td>
</tr>
<tr>
<td>cal</td>
<td>The calorie (gram calorie)</td>
</tr>
<tr>
<td>Cal</td>
<td>1000 calories; kilocalorie</td>
</tr>
<tr>
<td>cAMP</td>
<td>Cyclic adenosine 3’,5’-monophosphate</td>
</tr>
<tr>
<td>CBF</td>
<td>Cerebral blood flow</td>
</tr>
<tr>
<td>CBG</td>
<td>Corticosteroid-binding globulin, transcortin</td>
</tr>
<tr>
<td>cc</td>
<td>Cubic centimeters</td>
</tr>
<tr>
<td>CCK, CCK-PZ</td>
<td>Cholecystokinin-pancreozymin</td>
</tr>
<tr>
<td>CFF</td>
<td>Critical fusion frequency</td>
</tr>
<tr>
<td>cGMP</td>
<td>Cyclic 3’,5’-guanosine monophosphate</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>CoA</td>
<td>Coenzyme A</td>
</tr>
<tr>
<td>COHb</td>
<td>Carbonmonaxyhemoglobin</td>
</tr>
<tr>
<td>Compound A</td>
<td>11-Dehydrocorticosterone</td>
</tr>
<tr>
<td>Compound B</td>
<td>Corticosterone</td>
</tr>
<tr>
<td>Compound E</td>
<td>Cortisone</td>
</tr>
<tr>
<td>Compound F</td>
<td>Cortisol</td>
</tr>
<tr>
<td>Compound S</td>
<td>11-Deoxycortisol</td>
</tr>
<tr>
<td>COMT</td>
<td>Catechol-O-methyltransferase</td>
</tr>
<tr>
<td>cps</td>
<td>Cycles per second, hertz</td>
</tr>
<tr>
<td>CR</td>
<td>Conditioned reflex</td>
</tr>
<tr>
<td>Cr</td>
<td>Creatinine</td>
</tr>
<tr>
<td>CRH, CRF</td>
<td>Corticotropin-releasing hormone</td>
</tr>
<tr>
<td>CRO</td>
<td>Cathode-ray oscilloscope</td>
</tr>
<tr>
<td>CS</td>
<td>Conditioned stimulus</td>
</tr>
<tr>
<td>CSF</td>
<td>Cerebrospinal fluid; also colony-stimulating factor</td>
</tr>
<tr>
<td>CT</td>
<td>Computed tomography</td>
</tr>
<tr>
<td>C terminal</td>
<td>COOH end of a peptide or protein</td>
</tr>
<tr>
<td>cyclic AMP</td>
<td>Cyclic adenosine 3’,5’-monophosphate</td>
</tr>
<tr>
<td>Cys</td>
<td>Cysteine</td>
</tr>
<tr>
<td>CZL</td>
<td>Crystalline zinc insulin</td>
</tr>
<tr>
<td>DAG</td>
<td>Diacylglycerol</td>
</tr>
<tr>
<td>dB</td>
<td>Decibel</td>
</tr>
<tr>
<td>DEA, DHEA, DHA</td>
<td>Dehydroepiandrosterone</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>DFP</td>
<td>Diisopropyl fluorophosphosphate</td>
</tr>
<tr>
<td>DHT</td>
<td>Dihydrotestosterone</td>
</tr>
<tr>
<td>DIT</td>
<td>Dihidrototyrosine</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>D₂O</td>
<td>Deuterium oxide (heavy water)</td>
</tr>
<tr>
<td>DOCA</td>
<td>Deoxycorticosterone acetate</td>
</tr>
<tr>
<td>DPG, 2,3-DPG</td>
<td>2,3-Diphosphoglycerate</td>
</tr>
<tr>
<td>ECF</td>
<td>Extracellular fluid</td>
</tr>
<tr>
<td>ECG, EKG</td>
<td>Electrocardiogram</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EMG</td>
<td>Electromyogram</td>
</tr>
<tr>
<td>EPSP</td>
<td>Excitatory postsynaptic potential</td>
</tr>
<tr>
<td>ERG</td>
<td>Electroretinogram</td>
</tr>
<tr>
<td>FAD</td>
<td>Flavin adenine dinucleotide</td>
</tr>
<tr>
<td>FEV₁</td>
<td>Forced expiratory volume in first second of forced expiration after maximum inspiration</td>
</tr>
<tr>
<td>FFA</td>
<td>Unesterified free fatty acid (also called NEFA, UFA)</td>
</tr>
<tr>
<td>FGF</td>
<td>Fibroblast growth factor</td>
</tr>
<tr>
<td>FGFR</td>
<td>Fibroblast growth factor receptor</td>
</tr>
<tr>
<td>FMN</td>
<td>Flavin mononucleotide</td>
</tr>
<tr>
<td>FRH, FSH-RH, FRF</td>
<td>FSH releasing hormone</td>
</tr>
<tr>
<td>FSH</td>
<td>Follicle-stimulating hormone</td>
</tr>
<tr>
<td>ft</td>
<td>Foot or feet</td>
</tr>
<tr>
<td>g, gm</td>
<td>Gram(s)</td>
</tr>
<tr>
<td>g</td>
<td>Unit of force; 1 g equals the force of gravity on the earth's surface</td>
</tr>
<tr>
<td>GABA</td>
<td>Gamma-aminobutyrate</td>
</tr>
<tr>
<td>GAD</td>
<td>Glutamate decarboxylase</td>
</tr>
<tr>
<td>GBG</td>
<td>Gonadal steroid-binding globulin</td>
</tr>
<tr>
<td>G-CSF</td>
<td>Granulocyte colony-stimulating factor</td>
</tr>
<tr>
<td>GFR</td>
<td>Glomerular filtration rate</td>
</tr>
<tr>
<td>GH</td>
<td>Growth hormone</td>
</tr>
<tr>
<td>GHH,GIF</td>
<td>Growth hormone-inhibiting</td>
</tr>
<tr>
<td>GIP</td>
<td>Gastric inhibitory peptide</td>
</tr>
<tr>
<td>Gla</td>
<td>Gamma-carboxyglutamic acid</td>
</tr>
<tr>
<td>Glu</td>
<td>Glutamic acid</td>
</tr>
<tr>
<td>GLUT</td>
<td>Glucose transporter</td>
</tr>
<tr>
<td>Gly</td>
<td>Glycine</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Granulocyte-macrophage colonystimulating factor</td>
</tr>
<tr>
<td>GnRH</td>
<td>Gonadotropin-releasing hormone; same as LHRH</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosine triphosphate</td>
</tr>
<tr>
<td>h, Hour(s)</td>
<td>Hour(s)</td>
</tr>
<tr>
<td>H</td>
<td>Histidine</td>
</tr>
<tr>
<td>Hb</td>
<td>Deoxygenated hemoglobin</td>
</tr>
<tr>
<td>HBE</td>
<td>His bundle electrogram</td>
</tr>
<tr>
<td>HbO₂</td>
<td>Oxyhemoglobin</td>
</tr>
<tr>
<td>HCC, 25-HCC</td>
<td>25-Hydroxycholecalciferol, a metabolite of vitamin D₃</td>
</tr>
<tr>
<td>hCG</td>
<td>Human chorionic gonadotropin</td>
</tr>
<tr>
<td>hCS</td>
<td>Human chorionic Somatomammotropin</td>
</tr>
<tr>
<td>Hct</td>
<td>Hematocrit</td>
</tr>
<tr>
<td>HDL</td>
<td>High-density lipoprotein</td>
</tr>
<tr>
<td>hGH</td>
<td>Human growth hormone</td>
</tr>
<tr>
<td>5-HIAA</td>
<td>5-Hydroxyindoleacetic acid</td>
</tr>
<tr>
<td>HIOMT</td>
<td>Hydroxyindole-O-methyltransferase</td>
</tr>
<tr>
<td>His</td>
<td>Histidine</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>HLA</td>
<td>Human leukocyte antigen</td>
</tr>
<tr>
<td>H substance</td>
<td>Histaminelike capillary vasodilator</td>
</tr>
<tr>
<td>5-HT</td>
<td>Serotonin</td>
</tr>
<tr>
<td>IDDM</td>
<td>Insulin-dependent diabetes mellitus</td>
</tr>
<tr>
<td>IDL</td>
<td>Intermediate-density lipoprotein</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>IGF-I, IGF-II</td>
<td>Insulinlike growth factors I and II</td>
</tr>
</tbody>
</table>
I-IMP: \(^{123}\)I-labeled iodoamphetamine

IL: Interleukin

Ile, lleu: Isoleucine

IP\(_3\): Inositol 1,4,5-triphosphate, inositol triphosphate

IPSP: Inhibitory postsynaptic potential

IU: International unit(s)

IUD: Intrauterine device

JG cells: Juxtaglomerular cells

k: Kilo- \(10^{-3}\); see Table 3, above

kcal (Cal): Kilocalorie (1000 calories)

LATS: Long-acting thyroid stimulator

LDH: Lactate dehydrogenase

LDL: Low-density lipoprotein

LES: Lower esophageal sphincter

Leu: Leucine

log: Logarithm to base 10

LRH, LHRH, LRF: Luteinizing hormone-releasing hormone; same as GnRH

LTD: Long-term depression

LTP: Long-term potentiation

M: Molarity (mol/L); also mega-, \(10^{-6}\); also methionine

M cells: Microfold cells

MAO: Monoamine oxidase

MBC: Maximal breathing capacity (same as MVV)

M-CSF: Macrophage colony-stimulating factor

MDMA: 3,4-Methylenedioxy methamphetamine

MHC: Major histocompatibility complex; also myosin heavy chain

MHPG: 3-Methoxy-4-hydroxyphenylglycol

MRI: Magnetic resonance imaging

mRNA: Messenger RNA

MSH: Melanocyte-stimulating hormone

MVV: Maximal voluntary ventilation

N: Normality (of a solution): also Newton (SI unit of force); also asparagine

NAD: Nicotinamide adenine dinucleotide; same as DPN

NADH: Dihydronicotinamide adenine dinucleotide; same as DPNH

NADP+: Nicotinamide adenine dinucleotide phosphate; same as TPN

NADPH: Dihydronicotinamide adenine dinucleotide phosphate; same as TPNH

NGF: Nerve growth factor

NIDDM: Non-insulin-dependent diabetes mellitus

NMDA: N-Methyl-D-aspartate

NO: Nitric oxide

NREM sleep: Nonrapid eye movement (spindle) sleep

NSAID: Nonsteroidal anti-inflammatory drug

NTS: Nucleus of the tractus solitarius

NOS: Organum vasculosum of the lamina terminalis

P: Pico-, \(10^{-12}\)

P450: Cytochrome P450

P\(_{50}\): Partial pressure of \(O_2\) at which hemoglobin is half-saturated with \(O_2\)

PAF: Platelet-activating factor

PAH: Para-Aminohippuric acid

PBI: Protein-bound-iodine

P cells: Principal cells in the renal tubules; also pacemaker cells of SA and AV nodes

PCD: Programmed cell death, apoptosis

PDECGF: Platelet-derived endothelial cells growth factor

PET: Positron emission tomography

PGO spikes: Ponto-geniculo-occipital spikes in REM sleep
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>Negative logarithm of the H^+ concentration of a solution</td>
</tr>
<tr>
<td>PIH, PIF</td>
<td>Prolactin-inhibiting hormone</td>
</tr>
<tr>
<td>pK</td>
<td>Negative logarithm of the equilibrium constant for a chemical reaction</td>
</tr>
<tr>
<td>PLC</td>
<td>Phospholipase C</td>
</tr>
<tr>
<td>PRH, PRF</td>
<td>Prolactin-releasing hormone</td>
</tr>
<tr>
<td>PTA</td>
<td>Plasma thromboplastin antecedent (clotting factor XI)</td>
</tr>
<tr>
<td>PTC</td>
<td>Plasma thromboplastin component (clotting factor IX); also phenylthiocarbamide</td>
</tr>
<tr>
<td>PTH</td>
<td>Parathyroid hormone</td>
</tr>
<tr>
<td>PZI</td>
<td>Protamine zinc insulin</td>
</tr>
<tr>
<td>RAS</td>
<td>Reticular activating system</td>
</tr>
<tr>
<td>rbc</td>
<td>Red blood cell(s)</td>
</tr>
<tr>
<td>RDS</td>
<td>Respiratory distress syndrome</td>
</tr>
<tr>
<td>REM sleep</td>
<td>Rapid eye movement (paradoxical) sleep</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RPF</td>
<td>Renal plasma flow</td>
</tr>
<tr>
<td>RQ</td>
<td>Respiratory quotient</td>
</tr>
<tr>
<td>s</td>
<td>second(s); also standard deviation of a sample</td>
</tr>
<tr>
<td>SA node</td>
<td>Short-chain fatty acid(s)</td>
</tr>
<tr>
<td>SCUBA</td>
<td>Self-contained underwater breathing apparatus</td>
</tr>
<tr>
<td>SDA</td>
<td>Specific dynamic action</td>
</tr>
<tr>
<td>SGLT 1</td>
<td>Sodium-dependent glucose transporter 1</td>
</tr>
<tr>
<td>SGOT</td>
<td>Serum glutamic-oxaloacetic transaminines</td>
</tr>
<tr>
<td>SIDS</td>
<td>Sudden infant death syndrome</td>
</tr>
<tr>
<td>SIF cells</td>
<td>Small, intensely fluorescent cells in sympathetic ganglia</td>
</tr>
<tr>
<td>SPCA</td>
<td>Proconvertin (clotting factor VII)</td>
</tr>
<tr>
<td>SS 14</td>
<td>Somatostatin 14</td>
</tr>
<tr>
<td>SS 28</td>
<td>Somatostatin 28</td>
</tr>
<tr>
<td>SS 28 (1-12)</td>
<td>Polypeptide related to somatostatin that is found in tissues</td>
</tr>
<tr>
<td>STH</td>
<td>Somatotropin, growth hormone</td>
</tr>
<tr>
<td>T3</td>
<td>3,5,3,-Triiodothyronine</td>
</tr>
<tr>
<td>T4</td>
<td>Thyroxine</td>
</tr>
<tr>
<td>TBG</td>
<td>Thyroxine-binding globulin</td>
</tr>
<tr>
<td>TBPA</td>
<td>Thyroxine-binding prealbumin (now called transthyretin)</td>
</tr>
<tr>
<td>TBW</td>
<td>Total body water</td>
</tr>
<tr>
<td>Tc cells</td>
<td>Cytotoxic T cells</td>
</tr>
<tr>
<td>TEA</td>
<td>Tetraethylammonium</td>
</tr>
<tr>
<td>TETRAC</td>
<td>Tetraiodothyroacetic acid</td>
</tr>
<tr>
<td>TF/P</td>
<td>Concentration of a substance in renal tubular fluid divided by its concentra</td>
</tr>
<tr>
<td>TGF</td>
<td>Transforming growth factor</td>
</tr>
<tr>
<td>Tm</td>
<td>Renal tubular maximum</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor necrosis factor</td>
</tr>
<tr>
<td>TSH</td>
<td>Thyroid-stimulating hormone</td>
</tr>
<tr>
<td>T/s ratio</td>
<td>Thyroid/serum iodide ratio</td>
</tr>
<tr>
<td>TTX</td>
<td>Tetrodotoxin</td>
</tr>
<tr>
<td>Tyr</td>
<td>Tyrosine</td>
</tr>
<tr>
<td>U</td>
<td>Unit(s)</td>
</tr>
<tr>
<td>UFA</td>
<td>Unesterified free fatty acid (same as FFA)</td>
</tr>
<tr>
<td>US</td>
<td>Unconditioned stimulus</td>
</tr>
<tr>
<td>UTP</td>
<td>Uridine triphosphate</td>
</tr>
<tr>
<td>V1, V2, etc</td>
<td>Unipolar chest electrocardiographic leads</td>
</tr>
<tr>
<td>VIP</td>
<td>Vasoactive intestinal polypeptide</td>
</tr>
<tr>
<td>VLDL</td>
<td>Very low density lipoprotein</td>
</tr>
<tr>
<td>VMA</td>
<td>Vanillylmandelic acid (3-methoxy-4-hydroxy-mandelic acid)</td>
</tr>
<tr>
<td>VOR</td>
<td>Vestibulo-ocular reflex</td>
</tr>
<tr>
<td>VR</td>
<td>Unipolar right arm electrocardiographic lead</td>
</tr>
<tr>
<td>wbc</td>
<td>White blood cell(s)</td>
</tr>
<tr>
<td>X chromosome</td>
<td>One of the sex cortex in humans</td>
</tr>
<tr>
<td>Y chromosome</td>
<td>One of the sex chromosomes in humans</td>
</tr>
</tbody>
</table>
Greek Alphabet

<table>
<thead>
<tr>
<th>Greek Letter</th>
<th>English Name</th>
<th>Greek Letter</th>
<th>English Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>alpha</td>
<td>ν</td>
<td>nu</td>
</tr>
<tr>
<td>β</td>
<td>beta</td>
<td>ξ</td>
<td>xi</td>
</tr>
<tr>
<td>γ</td>
<td>gamma</td>
<td>ο</td>
<td>omicron</td>
</tr>
<tr>
<td>δ</td>
<td>delta</td>
<td>π</td>
<td>pi</td>
</tr>
<tr>
<td>ε</td>
<td>epsilon</td>
<td>ρ</td>
<td>rho</td>
</tr>
<tr>
<td>ζ</td>
<td>zeta</td>
<td>σ, ζ</td>
<td>sigma</td>
</tr>
<tr>
<td>η</td>
<td>eta</td>
<td>τ</td>
<td>tau</td>
</tr>
<tr>
<td>θ</td>
<td>theta</td>
<td>υ</td>
<td>upsilon</td>
</tr>
<tr>
<td>ι</td>
<td>iota</td>
<td>φ</td>
<td>phi</td>
</tr>
<tr>
<td>κ</td>
<td>kappa</td>
<td>χ</td>
<td>chi</td>
</tr>
<tr>
<td>λ</td>
<td>lambda</td>
<td>ψ</td>
<td>psi</td>
</tr>
<tr>
<td>μ</td>
<td>mu</td>
<td>ω</td>
<td>omega</td>
</tr>
</tbody>
</table>